You often hear questions about the “true” carbon footprint of one renewable industry versus another. Life cycle analysis provides the answer. This short post from Yale Climate Connections answers the question “What’s the carbon footprint of a wind turbine“?
Italian-Swiss shipping company MSC is now the 6th largest emitter in Europe. Look at all those aging eastern-bloc power plants… and then a transport company right in the center.
Wondered about the carbon impact of software development? The Green Software Foundation was established by Microsoft, Accenture, Github, and Thoughtworks to build an ecosystem of people, standards, tooling, and best practices for sustainable software development.
Both Dave and I were struggling for breath as we hiked across Abra Huacahuasijasa, a 15,200 ft mountain pass overlooking the Sacred Valley of the Incas. We were an unlikely pair — a farmer from western Illinois and a techie from Washington state. The two of us met a few days earlier when we both joined a hiking adventure in Peru. And here we were, experiencing Peru, and sharing details of our lives as we hiked through this magnificent landscape.
Over dinner I learned that his parents had bought their family farm in the 1960’s. The farm they purchased had been 100 acres of mixed use farm land, with both crops and livestock. In the intervening decades Dave and his brother had taken their parents little farm and expanded it to 10,000 acres. Both Dave and his brother were college educated, one with a degree in agricultural science and the other in finance. They had used their educations to expand the family farm into a substantial business.
Today, that farm produces mostly corn and most of the corn they produce is converted into ethanol. The two brothers had doubled down on corn during the ethanol boom of the early 2000’s. They bought up neighboring farms as they became available, invested in equipment to modernize the operation, and used sophisticated trading strategies on futures markets to ensure a steady stream of income, even during poor producing seasons.
The post WW1 agricultural boom had encouraged farmers to expand to feed foreign markets as Europe rebuilt after the war. However, the bottom fell out of that market in the 1920s just as the rise of the automobile crushed local feed markets. American farmers were wiped out by the perfect storm of the transition to the automobile, the retirement of the horse, and the drought of the 1930s that became known as the Great Depression.
Texas tenant farmer, Marysville CA, 1929. Library of Congress, Prints & Photographs Division, FSA/OWI Collection
Over the next two decades, the demand for corn is likely to see a steep decline. Extreme weather due to global warming may also impact agriculture, just as it did during the 1930s.
We may not experience anything like the Great Depression. However, as we move to electrify everything, which we must, let’s also plan for the inevitable impacts it will bring.
2.3 million seems like a lot of chargers, doesn’t it? For comparison purposes, as of 2019 the UK had just over 8,300 filling stations. Even if you suppose that each filling station has 8 pumps, and that recharging an electric vehicle will take 4x longer than refilling a gasoline vehicle, you still only end up with about 256,000 public charge points needed.
The truth is that we have no idea how many chargers are actually needed. In this (now dated) EV charging behavior study 8,300 EV drivers were tracked over three years, and 6 million charge events. The data showed that over 80% of charging was performed at home, even when public chargers were made widely available. This is a completely different behavior to filling a car with gasoline. After all, with gasoline there is no option to fill at home!
Similar circumstances, 1900
In the year 1900 New York City had a population of 100,000 horses on the streets which produced 2.5 million pounds of manure per day that had to be constantly removed. The tonnes of dried and pulverized manure attracted a steady population of disease carrying pests, not to mention the ever present layer of manure stuck to shoes.
Over 40 horses also died each day, and these had to be removed as well. And finally, feeding and stabling 100,000 horses was, in itself, a massive logistics problem.
By 1912, automobiles outnumbered horses on the streets of New York, and by 1917 the last horse car was retired. And with that retirement, the industry that housed, fed, used, and cleaned-up after the horses also faded into history. Disease rates fell, air and water quality improved, carriage houses became first garages, and then later prime Manhattan real estate.
Today’s disruption
We don’t yet understand the consequences of electrifying everything. But we do know that broadly adopted technologies, like the horse and buggy and then the automobile, inevitably create infrastructure to support them. History has also taught us that the infrastructure to support one wave of innovation may not be required in the next.
Widespread adoption of electric automobiles will impact fueling stations, the businesses attached to those stations like restaurants, corner stores, and repair shops, and many others. It will likely drive the cost of electricity higher, at least temporarily, as generation capacity catches up. The adoption of electric vehicles will also drive urban planning / zoning as homes will need to be upgraded to have suitable service to accommodate the extra power draw, and will also need to have suitable high voltage service installed in garages. Electrifying everything will create opportunities, but also eliminate other business types.
And that brings us back to the UK auto industries 2.3 million chargers. The number of chargers needed is, in the words of the recently deceased Donald Rumsfeld, a “known unknown”. We don’t know how many chargers will actually be needed, but it’s going to be a lot. 2.3 million still seems excessive, but who really knows today?
What we can’t see yet are the unknown unknowns. Time will reveal them to us, as well as the opportunities.
One tends to think of energy poverty as a developing nation problem. It’s true, after all, that the vast majority of those without access to energy (759M people) are in developing countries like Nigeria, Pakistan, the DRC, Ethiopia and India. For context, the entire generating capacity for sub-saharan Africa is approximately 58GW, spread across a population over a billion people. Annual electricity consumption is about 488 kWh per person, or about 5% of the United States. 600M people have no access whatsoever.
But is it just a developing country problem?
Dr. Nock challenged listeners to think about energy poverty in a different way. Are you energy poor if you live in a developed country? What if you spend a significant portion of your pay check on the power bill? Put on extra sweaters instead of turning the heat up in the winter? Or, as we have seen recently, suffer the extreme effects of a heat wave due to the high cost of electricity for cooling? Maybe even end up hospitalized, or dead.
Renewable energy, especially solar, is frequently put forward as an answer to energy poverty in the developing world. Off grid solutions promise to decentralize generation, and bring power to places that utilities can’t or won’t serve. Renewable energy also offers a route to weaning the developing world away from fossil fuels, coal especially.
In the developed world, rooftop solar is often seen as a way to reduce the power bill. However, some in California say that rooftop solar households are disproportionately wealthy and white, and have put the burden of the cost of the energy transition onto the shoulders of the poor. “Utilities are cynically playing the equity card”, they claim. The numbers seem to back them up, as wealthy households reap the double benefits of subsidies, and reduced utility costs.
Transitioning to a clean, renewable and global energy economy holds out huge promise. Let’s make sure we get the equity part of that promise right, and lift the neediest up at the same time. After all, if 1.1 billion poor Africans live in countries that are burning coal and oil to generate power, it won’t matter what we here in the west do. The planet will still get hotter.
“It’s warmer in parts of western Canada than in Dubai,” said David Phillips, senior climatologist for Environment Canada. Lytton, a small Canadian town in British Columbia at 50°13′52″N, became one of the hottest places on the planet last weekend. A town in Canada. Let that sink in.
Here’s a novel idea from Harvard’s investment manager to allow short sellers to deduct carbon emissions associated with the companies that they’re shorting from their portfolios. Do we need an emissions market? Or could the financial markets do the job?
Most people know that the carbon footprint of an electric vehicle, in use, is lower than that of an internal combustion vehicle. Except in the rare case that the electricity used by the vehicle is all generated from coal-fired stations, all of the literature confirms this. But what about the emissions impact of manufacturing an all-electric vehicle compared to an internal combustion engine? Well, that turned out to be a bit of a rabbit hole.
The first thing to know is that neither the automobile industry, nor the research models themselves, report data on emissions solely created during manufacture. Argonne Labs (part of the US Dept of Energy), has a comprehensive model called GREET (The Greenhouse gases, Regulated Emissions, and Energy use in Technologies Model) which seems to be the gold standard for all research at this point. GREET has been in development since at least 1999, and models everything to do with vehicular transport. It specifically separates the world into a fuel-cycle model, and a vehicle-cycle model, and what we’re after is the vehicle-cycle, which includes everything from raw materials sourcing, to manufacture, end-of-life, and recycling if applicable.
There are two challenges with GREET.
The output is a “levelized” model. What this means is that it produces a number which is emissions generated per distance travelled. Even though the emissions we are interested in are generated during manufacture, GREET apportions them over the expected life of the vehicle. It tries to answer the macro question of vehicle emissions, rather than helping us to understand the manufacturing emissions cost.
The model itself is incredibly detailed. Although it contains a (large) database of assumptions for all kinds of vehicle types, these will vary from manufacturer to manufacturer. It cannot know, for example, where one manufacturer sources electricity versus another. Only the individual corporations will know that.
GREET is a useful framework. It is being maintained actively by Argonne National Labs and was most recently updated in 2020. Researchers have published papers which claim to use the models, but also (necessarily) make gross assumptions about sources of materials and fuels. The independent research, therefore, can’t tell us much either.
Some of the manufacturers themselves do appear to use the framework. For example, if you read Ford’s 2020 CDP disclosures you will find that they reference the GREET 2019 model in their calculation of Scope 3 up-stream emissions footprint. They simply do not report the results for individual vehicles, but rather report on emissions in aggregate. However, GM and Fiat-Chrysler‘s filings show that they use completely different methodologies at this point, at least for disclosure.
For me, this is an unsatisfying answer. It does illustrate, however, the complexity of analyzing scope 3 emissions, and the challenge that lies ahead in understanding the true emissions associated with products we purchase. It also begs for a consistent methodology to be used across industries.
What happens if carbon dioxide removal (CDR) strategies are unsuccessful? Many net-zero ambitions count on being able to “abate” CO2, either through carbon dioxide capture technologies, or offsetting actions such as planting trees. Neil Grant and Dr. Ajay Gambhir from the Grantham Institute at Imperial College, London have modeled the impact of CDR failure. Eye opening.
The energy industry is building zero carbon capacity, and this will be a key factor in the effort to decarbonize global supply chains. Should we expect to see the entire grid become zero carbon? That’s probably unrealistic, for now.
For starters, there will always be a need for a reliable energy source that can be turned off and on at will. Large scale energy storage solutions, such as massive battery systems, will get us part of the way there. However, unless new technology, or new nuclear installs, bring us the instantaneous generation that fossil fuels offer it’s unlikely fossil fuels will go away completely. We will need fossil fuel or nuclear generation, and then appropriate abatement strategies.
In addition to the reliable energy source need, the grid itself is constructed around a paradigm of centralized generation, and then transmission to substations, and then homes. It’s a forward feed system that presumes we will truck fuel to generation sites, generate power, and then distribute the power forward for consumption. The impact of this is that generation tends to be placed close to consumption sites, in order to minimize transmission losses. But you can’t truck the wind, or the sun, to a convenient place to generate power. The other challenge is reverse flow. Feeding energy bi-directionally into the grid from what are today’s consumption sites creates a whole new set of problems. It’s likely the grid itself will need to be updated.
It was a scorcher here yesterday. Record temperatures, and set to achieve them again today. And for the record, these are not normal, or even normal variance. @weatherprof provides this insight:
To put climate extremes into perspective we measure against the average. The sigma is the standard deviation of a normal distribution of expected values. In this case the heat dome sigma max is 4.4 – that means it's outside of 99.99% of expected values or a 1/10,000+ chance (1/2) pic.twitter.com/8raIMAngkg
You might have seen the World Economic Forum Net-Zero Challenge: Supply Chain Opportunity paper back when it came out in January. It’s worth a read if you missed it. Their analysis showed that 8 supply chains accounted for over 50% of emissions globally. The dirtiest was food; the business of agriculture, processing, packaging, and getting food for us all to eat in supermarkets, and on our tables. Farm Progress, a web-site focused on farming industry news, writes about how some farmers are approaching carbon markets. That’s a positive step toward decarbonizing this important supply chain.
A ferocious debate rages between advocates of free market climate transition solutions, and those who would prefer a heavier hand from government. Over the weekend, the Guardian editorial page opined that Boris Johnson’s government simply doesn’t understand the scale of what they’ve signed up for. Be that as it may, the only way to achieve progress on climate is through strong private/public partnerships. Business government to set the targets, and the sanctions for failing to meet them. Government needs business to actually do the heavy lifting toward meeting the goals.