Categories
Uncategorized

Is energy access simply modern colonialism?

770 million people globally lack access to electricity. They’re predominantly in developing nations. Despite international commitments to energy equity, like the UN Sustainable Development Goals, the dominant view is that electricity access for these folks will be a slow and expensive process.

On July 14th, the Carbon Tracker Initiative published a report titled Reach for the Sun, which challenges this view. They forecast that 88% of the growth in global electricity demand between 2019 and 2040 will come from emerging markets. Moreover, demand for fossil fuel generation in those markets has already, or is about to, peak. Those countries are investing in renewables.

They divide the emerging markets up into four groups:

  1. China, which is nearly half the demand for electricity, and 39% of the expected growth.
  2. Coal and gas importers, such as India or Vietnam, which account for 1/3 of the demand for electricity, and nearly half of the growth.
  3. Coal and gas exporters, like Russia and Indonesia, which are 16% of the electricity demand, but only 10% of the forecast growth.
  4. Fragile states, like Nigeria and Iraq, which account for 3% of demand, and about the same percentage of growth.

Carbon Tracker makes the case that emerging markets will leapfrog developed nations in renewable energy deployment as they modernize their economies. With little to no legacy generation infrastructure in place, it makes sense to build out with renewables. Moreover, the added attraction of energy independence makes this a strongly preferable path.

Developed nations in North America and Europe have the disadvantages of:

  1. Sunk costs in the form of coal and gas generation infrastructure.
  2. Political headwinds as vested interests in fossil fuel industry players work against renewables.
  3. Economic headwinds slowing down deployment of renewables as comparitively low growth in demand makes financial cases difficult.

The report is tremendously detailed. There is much to digest here.

The most extraordinary takeaway for me, though, was the similarity between 19th century colonialism, and today’s oligarchy of fossil fuel producing businesses and nations. Colonialism is the control of one group of people by another, generally by establishing colonies of settlers, for the purpose of economic exploitation. Developing nations export raw materials, and in some cases finished goods to the West. Energy independence is an inarguable benefit for them. Yet Western interests have actively sought to thwart renewable deployment in developing nations in order to continue to extract energy “rents” from these economies.

Is this modern colonialism? You tell me.

Categories
Uncategorized

“Green ammonia” for energy storage.

Yesterday a massive new wind and solar powered hydrogen generation plant was announced in Western Australia. The Western Green Energy Hub will produce up to 3.5 million tons of green hydrogen, or 20 million tons of green ammonia in a year, powered by 50GW of hybrid solar and wind. For context, according to the Australian Energy Regulator, the entire country has just over 50GW of total capacity today. This is truly a massive plant.

Why produce all that electricity, only to convert it into hydrogen or ammonia? And why ammonia?

Hydrogen is an efficient means to store energy, but with many drawbacks. Transporting liquid hydrogen directly, for example, requires storing the gas at -233C. It turns out that ammonia is also a very efficient means to store energy. Ammonia’s energy density by volume is 1.7x that of liquid hydrogen, and it’s more easily stored and transported as well. Japan intends to use hydrogen and ammonia fired systems for power generation. Mitsubishi is also developing 100% ammonia fired turbines intended for deployment in 2025.

The big drawback to ammonia is the Haber-Bosch process used to produce it at industrial scale today. We use vast amounts of ammonia globally, mostly for fertilizer. Indeed, we could not feed the planet without the Haber-Bosch process. However, the Haber-Bosch process consumes large amounts of energy (1-2% of world energy), takes natural gas as an input to generate hydrogen (3-5% of global production), and emits CO2 directly as a byproduct. “Green ammonia” production uses water electrolysis to generate hydrogen instead of natural gas, which eliminates the emission of CO2, and powers the Haber-Bosch process by renewable electricity. It still consumes large amounts of electricity, but generated from renewable sources instead. Hence the need for a power generation plant capable of powering the entire continent of Australia!

Green ammonia seems promising, although not implemented at scale yet. Multiple energy storage projects are in progress globally. Yesterday’s Western Green Energy Hub announcement from Australia only adds to the momentum.

Lastly, there are still many possible efficiencies around the production of ammonia. For example, promising work is underway to produce ammonia using reverse fuel-cell processes directly from water and nitrogen gas. No electrolysis, no Haber-Bosch process, very low energy requirements.

Perhaps one day ammonia will help us to both power and feed the planet, without the emissions downside it creates today.

Categories
Uncategorized

Long Read: Statistical Review of World Energy.

BP’s 70th annual Statistical Review of World Energy came out this past week. This data-rich documents is 70 pages of detailed, country by country, statistics about world energy capacity, production, and consumption with commentary. Here are some of the highlights.

Consumption

Due to COVID-19, last year saw the largest decline in energy consumption since World War 2. Consumption fell by 4.5%, primarily due to the shutdown of the transportation industry. Oil consumption fell by 9.2%, while natural gas fell only 2.3%. But renewables — solar and wind — had their best year ever as capacity increased by 50%. BP themselves were surprised by this, saying “we materially underestimated the growth of wind and solar power over the last five years”. But before we break out the bubbly, let’s put that in context. Even with that super result, renewables are still a small fraction of the global energy mix. Non-emitting energy (Nuclear, Hydroelectric, Solar and Wind) are still just 16.8% of the overall energy mix.

OilGasCoalNuclearHydroRenewableTotal
173.73137.62151.4223.9838.1631.71556.63
31.2%24.7%27.2%4.3%6.9%5.7%
Primary Energy Consumption (EJ – Exajoules)

The world is finally weaning itself off coal. Coal generation declined by 405 TWh, which was almost directly correlated to the 358 TWh increase in solar and wind generation. We are truly seeing coal-fired generation being phased out in favor of renewables.

On a country by country basis, the biggest global consumers of energy were the United States (87.79 EJ) and China (145.46 EJ), or 15.8% and 26.1% of global energy consumption. Nobody else comes close, except if you start to combine regions. All of Europe, for example, consumed 77.15 EJ, a little less than the USA. It’s also worth noting that the United States consumed 15.8% of the global energy supply, but has just 4.25% of the population. China consumed 26.1% of the worlds energy, but has 18.5% of the population.

Globally, each human on the planet averages annual consumption of 71.4 Gigajoules (GJ) of electricity. However, Canadians (361GJ), Qataris (594 GJ), Saudi Arabians (303 GJ), Emeratis (423 GJ), and Australians (218 GJ) all are good examples. Or maybe it’s just the weather. Singapore has no natural resources, and Singaporeans use an astonishing 583.9 GJ per person of energy annually, second only to Qataris.

Emissions

Global carbon emissions from energy use also fell, and even more dramatically than energy use itself. Carbon emissions fell by 6.3%, while energy consumption declined by just 4.5%.

Among the big economies, the US generates 18.3% of its energy from non-emitting sources, China 15.7%, and Europe 28.8%. China is still heavily dependent on coal, and Europe has been helped out by a favorable shift to renewable plus the fact that a whopping 36% of France’s energy comes from nuclear. Canada, often in the news because of it’s foot-dragging on emissions targets, does surprisingly well with 35.4% of it’s energy coming from non-emitting sources. This is due to the outsize impact of the country’s hydro-electric industry. Canada, with fewer than 40 million people, is the second largest producer of hydro-electric power globally, only surpassed by China.

The biggest absolute GHG emitters are (in order) China with 9,899.3 megatonnes, the United States (4,457.2), Indonesia (2,302.3), and Russia (1,482.2). Nearly a third of all emissions are from China. This is no surprise, given China’s massive energy appetite, but it’s still sobering nonetheless. Let’s put these into context, though. The US, with 330M people, is a much bigger emitter, per capita, than China. If the Chinese were to pollute the way America does, then their emissions would be close to 19,000 megatonnes. And all of Europe, which is a population of roughly half of China, emits just 3,596.8 megatonnes.

Geopolitics

The geopolitical world of energy stands out clearly in this report.

The United States is well established economically, and has small reserves of oil (68.8M barrels), about 6.7% of the worlds gas reserves (12.6 trillion cubic metres), and almost a quarter of the worlds coal reserves (248,941 million tonnes). At current rates of consumption, the US will exhaust its oil in about 10 years, and gas in 15 years. The US is the “Saudi Arabia of coal”, but most of that resource will stay in the ground.

China, by contrast, sits on a paltry 26M barrels of oil, 8.4 trillion cubic meters of gas, and 143,197 million tonnes of coal. China uses less oil annually than the US, but has only about 4 years reserves remaining. The country uses less than half the gas of the United States today, and thus has 25 years of reserves remaining. And they burn a lot of coal to generate power.

Consequentially, the US is a net exporter of oil and gas. In contrast China imports nearly all the oil and gas it needs to meet its energy needs, and China’s energy needs are growing at a blistering 3.8% annually.

The Chinese have been reluctant to give up coal electric generation, as the one energy source they have in abundance is coal. It is the one tool they have which gives them a measure of energy independence. It should therefore be unsurprising that China now leads the world in renewable power generation (#1 in hydroelectric, solar and wind), and new renewable capacity additions (in 2020 China accounted for 36% of new global solar capacity, and 38% of new global wind capacity). China has no choice. They cannot continue to generate electricity with coal. The global trend toward net-zero emissions means that Chinese companies risk being cut off from global export markets unless they can show that the carbon footprint of the products they sell is acceptable to their customers. Moreover, China cannot continue using coal to generate electricity at home without polluting its already fouled air even more.

It should also come as no surprise that 44% of the electric vehicles manufactured and sold in the world were sold in China. China is completely dependent on foreign oil. They cannot satisfy the growing appetite for vehicles domestically without an alternative to gasoline. They also cannot build the economy they want without the logistics in place to move goods from one location to another. They need electrified transportation more than any other economy globally.

Nuclear

Nuclear was a surprise. The top producer of nuclear energy in the world today is the United States, despite the unpopularity of nuclear domestically. 31% of the nuclear in use today is in the USA (7.39 EJ), although it is declining. The next largest producers of nuclear energy were China (3.25 EJ) and France (3.14 EJ). Few countries globally are adding nuclear capacity, the most notable exception being China, where nuclear (pre-COVID) was growing at a rate of 16.7% annually. Again, unsurprising that China would be building this capacity.

Conclusions

There are three inescapable conclusions in BP’s numbers.

The first is that there is little economic incentive in the west (Europe and North America) to replace fossil fuel generation. The energy demands of the west’s stable economies are growing slowly, having shifted most manufacturing overseas. The western economies’ focus on emissions are largely domestic politics, centered around climate change risk management. To make the transition from fossil fuel to renewable energy will require deft political skills, regulatory frameworks, and a continuation of the economic incentives we have seen.

The second is that Asia-Pacific, having become the center of global manufacturing, must navigate growing their energy use carefully. Global supply chains originate in Asia-Pacific, today. Consequently the region has a ravenous appetite for energy, but must find ways to meet that appetite and grow consumption while managing and reducing GHG emissions. Expect to see this region lead renewable energy deployment globally for some time, as they deal with the double incentive of managing climate change risk, while rapidly growing economies to satisfy western consumers needs.

And finally, the two remaining superpowers of the world, China and the United States, are quite different in their approaches.

America is divided. America has a substantial fossil fuel export business, many politicians support that business, and American free speech rights permit climate deniers to manipulate the public by spreading disinformation about the severity of the climate crisis, and the value of solutions being proposed. The fossil fuel lobby is strong! However, America has the luxury of being able to dither simply by virtue of the fact that it has secure domestic energy resources, and business seems to be stepping into the leadership vacuum in a way that Washington is apparently not able to.

China, in contrast, has a more immediate crisis and as a result seems to have a more unified approach. The Chinese don’t have the energy independence that America has. As a result, they are simply “getting on with it”, rapidly deploying renewables, building electrified products and industry, and making plans to decarbonize generation by taking their coal plants off line. The pace at which China is weaning itself off coal is slower than some in the west want, yes, but it is happening.

The inescapable conclusion is that China is playing a “long game”, building expertise that will serve it well for generations. The rest of the world already buys much of its wind and solar generation capability from China. It’s not hard to see how cars and batteries will be next.

Categories
News

Recycled – July 6, 2021

  • Wondered about the carbon impact of software development? The Green Software Foundation was established by Microsoft, Accenture, Github, and Thoughtworks to build an ecosystem of people, standards, tooling, and best practices for sustainable software development.
Categories
Uncategorized

Renewables “On Fire”

The theme that renewable energy is cheaper than some kinds of fossil fuels keeps recurring. The Guardian reported last week that solar and wind are often cheaper than coal, noting that the cost of solar and wind have dropped 85% and 56% respectively over the last decade. Last fall, the IEA said Solar is now the cheapest electricity in history. In January 2021, the US EIA forecast that 84% of new capacity would be zero carbon. In fact, according to IRENA (the International Renewable Energy Association) global installs of renewables last year hit a record. And finally, in the 3rd episode of the Big Switch, University of Texas post doc researcher Dr. Joshua Rhodes talked about how Texas (home of big oil!) now deploys the largest wind generation fleet in the United States.

The energy industry is building zero carbon capacity, and this will be a key factor in the effort to decarbonize global supply chains. Should we expect to see the entire grid become zero carbon? That’s probably unrealistic, for now.

For starters, there will always be a need for a reliable energy source that can be turned off and on at will. Large scale energy storage solutions, such as massive battery systems, will get us part of the way there. However, unless new technology, or new nuclear installs, bring us the instantaneous generation that fossil fuels offer it’s unlikely fossil fuels will go away completely. We will need fossil fuel or nuclear generation, and then appropriate abatement strategies.

In addition to the reliable energy source need, the grid itself is constructed around a paradigm of centralized generation, and then transmission to substations, and then homes. It’s a forward feed system that presumes we will truck fuel to generation sites, generate power, and then distribute the power forward for consumption. The impact of this is that generation tends to be placed close to consumption sites, in order to minimize transmission losses. But you can’t truck the wind, or the sun, to a convenient place to generate power. The other challenge is reverse flow. Feeding energy bi-directionally into the grid from what are today’s consumption sites creates a whole new set of problems. It’s likely the grid itself will need to be updated.

Categories
Uncategorized

Batteries

Electric vehicle critics will often tell you that the environmental cost of the batteries is the “dirty little secret” that nobody is telling you about. The claim is that the manufacturing impact of the batteries is so high that we might as well just keep burning gasoline. The origin of this statement is an early and flawed study from 2017.

Let’s examine their claim in more detail.

Battery trends

Battery technology is advancing rapidly. You can see this in the price curve. In December of last year, Bloomberg NEF reported the first instances of vehicle batteries priced at below $100/kWh. At $100, most analyses show EVs priced equivalently to internal combustion engines. For comparison, a decade early that price was $1100/kWh. That means that 10 years ago, the price of the 53 kWh battery in Tesla’s original roadster was over $50,000. It’s no wonder those early Roadsters were so expensive!

The environmental cost of manufacturing vehicle batteries is also falling. A recent study estimated the manufacturing impact of current battery technology at 75 kg CO2e/kWh of battery capacity, down from 89 kg in 2019.

Analysis

The assertion made by the EV industry is that the increased environmental impact of manufacturing the vehicle is offset by the decreased impact of using the vehicle. Is that true?

To figure out the answer to that question, we need to know the CO2e impact of running a conventional vehicle vs an EV. Then, let’s add in the CO2e impact of the battery pack, divided over the expected lifetime of the battery, and we should have our answer.

For the sake of simplicity, let’s assume that the manufacturing impact of a conventional vehicle and an EV is roughly the same, excepting that the EV has the added impact of the battery pack. It’s not entirely true, because the conventional vehicle has a higher carbon cost to build than the EV (without the battery), but for the sake of simplification, let’s assume that they are the same.

My previous vehicle, a 2015 Ford Fusion, averaged about 23 mpg in actual usage. Ford rated it for 28 mpg, but I tracked my gasoline purchases over the lifetime of the vehicle, and it was roughly 23 mpg. I may have a bit of a lead foot. Gasoline combustion produces an estimated 18.95 lbs of CO2e per gallon used. Annually, I drive around 10,000 miles, which means that car was producing 8,226 lbs of CO2e annually.

My new vehicle, the Tesla Model Y AWD, is rated by the EPA for 28 kWh / 100 miles of driving. The Tesla should use about 2,800 kWh of electricity to drive the 10,000 miles I drive in a year. Now all we need to know is the CO2e costs to generate the electricity. According to the EPA, in the United States, the electricity industry as a whole produced an average of 0.92 lbs of CO2e per kWh of electricity generated. So, assuming that my power utility emits the same CO2e as the EPA average electrical utility, my CO2e costs will be 2,576 lbs. More on that in a minute…

FordTesla
Miles Driven10,00010,000
Electricity Used0 kWh2,800 kWh
Fuel Used435 gal0 gal
Unit Emissions18.95 lbs / gal0.92 lbs / kWh
CO2e Emitted8,226 lbs2,576 lbs
Annual operating emissions comparison

So for me, my old Ford emitted 5,650 lbs more CO2e annually than my new Tesla does.

Now let’s get back to that battery pack. Recall that the manufacturing CO2e impact of a battery is about 75 kg CO2e / kWh of capacity. So manufacturing the Tesla’s 75 kWh battery will emit about 5,625 kg of CO2e, which converted to lbs is 12,375 lbs. And then we have a simple calculation.

Years to "break even" = Battery Manufacturing CO2e / Annual CO2e savings.  

So, for me, it will take about 2.2 years before the manufacturing impact of the battery is recovered completely.

My Utility is PSE

I buy my energy from Puget Sound Energy here in the King County, WA area. PSE’s generation mix is roughly 1/3 renewable, 1/3 coal, and 1/3 gas.

SourceEmissions
Coal2.2 lbs / kWh
Natural Gas1.0 lbs / kWh
Renewable0 lbs / kWh
Blend1.06 lbs / kWh

Compared to the national average, PSE is actually a pretty dirty utility. My Tesla driving will generate 2,968 lbs of CO2e annually. And my emissions “payback” will extend to 2.35 years. What a calamity!

Fortunately, PSE has a green energy option, which we have chosen for our household. For an extra $.01/kWh (about $15/mo) we buy an energy mix which is generated 95% from solar and wind, and 5% from biogas. Biogas has about the same emissions profile as NG, which means that the PSE clean energy option produces about 0.05 lbs CO2e / kWh. Some folks consider biogas neutral environmentally, but let’s leave that for another day. In any case, my new Tesla’s CO2e footprint using PSE green energy is now reduced to just 140 lbs CO2e annually, and the “pay back” time for the battery is now just 1.5 years.

Over the 5 years I owned the Fusion, I estimate my emissions at about 41,000 lbs CO2e. I expect the Tesla to be a third of that. Automobiles have a lifetime of about 200,000 miles. Over 200,000 miles the Ford will emit 165,000 lbs CO2e. And if I own the Tesla that long? 15,000.

Your numbers will vary, but the calculation is not hard to do. And no matter how you do the numbers, there simply is no case that the environmental impact of EV battery manufacture outweighs the benefit of not burning gasoline to run a vehicle.

Case closed.